Modeling random and non-random decision uncertainty in ratings data: a fuzzy beta model
نویسندگان
چکیده
Modeling human ratings data subject to raters' decision uncertainty is an attractive problem in applied statistics. In view of the complex interplay between emotion and making rating processes, final choices seldom reflect true underlying responses. Rather, they are imprecisely observed sense that a non-random component uncertainty, namely uncertainty. The purpose this article illustrate statistical approach analyse which integrates both random components process. particular, beta fuzzy numbers used model variable dispersion linear instead adopted counterpart main idea quantify characteristics latent non-fuzzy responses by means observations fuzziness. To do so, version Expectation-Maximization algorithm estimate model's parameters compute their standard errors. Finally, proposed investigated simulation study as well two case studies from behavioral social contexts.
منابع مشابه
A New Dynamic Random Fuzzy DEA Model to Predict Performance of Decision Making Units
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiency of decision making units (DMUs) which ‎consume the same types of inputs and producing the same types of outputs. Believing that future planning and predicting the ‎efficiency are very important for DMUs, this paper first presents a new dynamic random fuzzy DEA model (DRF-DEA) with ‎common weights (using...
متن کاملSpatial Beta Regression Model with Random Effect
Abstract: In many applications we have to encountered with bounded dependent variables. Beta regression model can be used to deal with these kinds of response variables. In this paper we aim to study spatially correlated responses in the unit interval. Initially we introduce spatial beta generalized linear mixed model in which the spatial correlation is captured through a random effect. T...
متن کاملProbability-possibility DEA model with Fuzzy random data in presence of skew-Normal distribution
Data envelopment analysis (DEA) is a mathematical method to evaluate the performance of decision-making units (DMU). In the performance evaluation of an organization based on the classical theory of DEA, input and output data are assumed to be deterministic, while in the real world, the observed values of the inputs and outputs data are mainly fuzzy and random. A normal distribution is a contin...
متن کاملUNCERTAINTY DATA CREATING INTERVAL-VALUED FUZZY RELATION IN DECISION MAKING MODEL WITH GENERAL PREFERENCE STRUCTURE
The paper introduces a new approach to preference structure, where from a weak preference relation derive the following relations:strict preference, indifference and incomparability, which by aggregations and negations are created and examined. We decomposing a preference relation into a strict preference, anindifference, and an incomparability relation.This approach allows one to quantify diff...
متن کاملRANDOM FUZZY SETS: A MATHEMATICAL TOOL TO DEVELOP STATISTICAL FUZZY DATA ANALYSIS
Data obtained in association with many real-life random experiments from different fields cannot be perfectly/exactly quantified.hspace{.1cm}Often the underlying imprecision can be suitably described in terms of fuzzy numbers/\values. For these random experiments, the scale of fuzzy numbers/values enables to capture more variability and subjectivity than that of categorical data, and more accur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AStA Advances in Statistical Analysis
سال: 2021
ISSN: ['1863-8171', '1863-818X']
DOI: https://doi.org/10.1007/s10182-021-00407-7